top of page


Below is a selection of previous publications from Dr. Maria Maryanovich and the lab. Who knows, maybe the next publication will be yours! Join us and help advance scientific knowledge!

Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche
Nature Medicine, 2018

Aging of hematopoietic stem cells (HSCs) is associated with a decline in their regenerative capacity and multilineage differentiation potential, contributing to the development of blood disorders. The bone marrow microenvironment has recently been suggested to influence HSC aging, but the underlying mechanisms remain largely unknown. Here we show that HSC aging critically depends on bone marrow innervation by the sympathetic nervous system (SNS), as loss of SNS nerves or adrenoreceptor β3 signaling in the bone marrow microenvironment of young mice led to premature HSC aging, as evidenced by appearance of HSC phenotypes reminiscent of physiological aging. Strikingly, supplementation of a sympathomimetic acting selectively on adrenoreceptor β3 to old mice significantly rejuvenated the in vivo function of aged HSCs, suggesting that the preservation or restitution of bone marrow SNS innervation during aging may hold the potential for new HSC rejuvenation strategies.

Neural Regulation of Bone and Bone Marrow
Cold Spring Harb Perspect Med, 2018

Bones provide both skeletal scaffolding and space for hematopoiesis in its marrow. Previous work has shown that these functions were tightly regulated by the nervous system. The central and peripheral nervous systems tightly regulate compact bone remodeling, its metabolism, and hematopoietic homeostasis in the bone marrow (BM). Accumulating evidence indicates that the nervous system, which fine-tunes inflammatory responses and alterations in neural functions, may regulate autoimmune diseases. Neural signals also influence the progression of hematological malignancies such as acute and chronic myeloid leukemias. Here, we review the interplay of the nervous system with bone, BM, and immunity, and discuss future challenges to target hematological diseases through modulation of activity of the nervous system.

An MTCH2 pathway repressing mitochondria metabolism regulates hematopoietic stem cell fate
Nature Communications, 2015

The metabolic state of stem cells is emerging as an important determinant of their fate. In the bone marrow, haematopoietic stem cell (HSC) entry into cycle, triggered by an increase in intracellular reactive oxygen species (ROS), corresponds to a critical metabolic switch from glycolysis to mitochondrial oxidative phosphorylation (OXPHOS). Here we show that loss of mitochondrial carrier homologue 2 (MTCH2) increases mitochondrial OXPHOS, triggering HSC and progenitor entry into cycle. Elevated OXPHOS is accompanied by an increase in mitochondrial size, increase in ATP and ROS levels, and protection from irradiation-induced apoptosis. In contrast, a phosphorylation-deficient mutant of BID, MTCH2's ligand, induces a similar increase in OXPHOS, but with higher ROS and reduced ATP levels, and is associated with hypersensitivity to irradiation. Thus, our results demonstrate that MTCH2 is a negative regulator of mitochondrial OXPHOS downstream of BID, indispensible in maintaining HSC homeostasis.

A ROS rheostat for cell fate regulation
Trends in Cell Biology, 2013

Cellular reactive oxygen species (ROS) are tightly regulated to prevent tissue damage. ROS also help to monitor different cell fates, suggesting that a 'ROS rheostat' exists in cells. It is well established that ROS are crucial for stem cell biology; in this review, we discuss how mitochondrial ROS influence hematopoietic cell fates. We also examine the importance in this process of BID and other BCL-2 family members, many of which have been implicated in regulating cell fates by modulating mitochondrial integrity/activity and cell cycle progression in the hematopoietic lineage. Based on this knowledge, we propose that selected BCL-2 proteins coordinate mitochondria and nuclear activities via ROS to enable 'synchronized' cell fate decisions.

The ATM-BID pathway regulates quiescence and survival of haematopoietic stem cells
Nature Cell Biology, 2012

BID, a BH3-only BCL2 family member, functions in apoptosis as well as the DNA-damage response. Our previous data demonstrated that BID is an ATM effector acting to induce cell-cycle arrest and inhibition of apoptosis following DNA damage. Here we show that ATM-mediated BID phosphorylation plays an unexpected role in maintaining the quiescence of haematopoietic stem cells (HSCs). Loss of BID phosphorylation leads to escape from quiescence of HSCs, resulting in exhaustion of the HSC pool and a marked reduction of HSC repopulating potential in vivo. We also demonstrate that BID phosphorylation plays a role in protecting HSCs from irradiation, and that regulating both quiescence and survival of HSCs depends on BID's ability to regulate oxidative stress. Moreover, loss of BID phosphorylation, ATM knockout or exposing mice to irradiation leads to an increase in mitochondrial BID, which correlates with an increase in mitochondrial oxidative stress. These results show that the ATM-BID pathway serves as a critical checkpoint for coupling HSC homeostasis and the DNA-damage stress response to enable long-term regenerative capacity.

bottom of page